Countable discrete extensions of compact lines

Maciej Korpalski

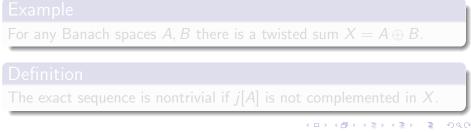
University of Wrocław

Maciej Korpalski (University of Wrocław) Countable discrete extensions of compact line

Consider an exact sequence of Banach spaces

$$0 \to A \xrightarrow{j} X \xrightarrow{p} B \to 0,$$

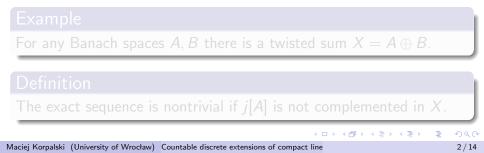
consisting of Banach spaces and bounded linear operators for which the image of previous map is equal to the kernel of the next one. Such a sequence or the space X itself is called a *twisted sum* of spaces A and B.



Consider an exact sequence of Banach spaces

$$0 \to A \xrightarrow{j} X \xrightarrow{p} B \to 0,$$

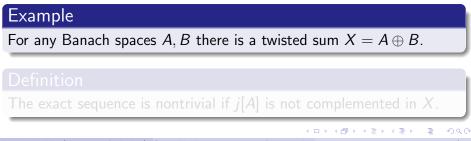
consisting of Banach spaces and bounded linear operators for which the image of previous map is equal to the kernel of the next one. Such a sequence or the space X itself is called a *twisted sum* of spaces A and B.



Consider an exact sequence of Banach spaces

$$0 \to A \xrightarrow{j} X \xrightarrow{p} B \to 0,$$

consisting of Banach spaces and bounded linear operators for which the image of previous map is equal to the kernel of the next one. Such a sequence or the space X itself is called a *twisted sum* of spaces A and B.



Consider an exact sequence of Banach spaces

$$0 \to A \xrightarrow{j} X \xrightarrow{p} B \to 0,$$

consisting of Banach spaces and bounded linear operators for which the image of previous map is equal to the kernel of the next one. Such a sequence or the space X itself is called a *twisted sum* of spaces A and B.

Example For any Banach spaces A, B there is a twisted sum $X = A \oplus B$. Definition The exact sequence is nontrivial if j[A] is not complemented in X.

Problem (Cabello Sánchez, Castillo, Kalton, Yost)

Is there a nontrivial twisted sum of c_0 and C(K) for a nonmetrizable compact space K?

Problem

Given a cardinal number κ , is there a nontrivial twisted sum of c_0 and C(K) for a nonmetrizable compact space K of weight equal to κ ?

Fact

Assume that K is a compact space and there is $L \in CDE(K)$ without property (\mathcal{E}). Then there is a nontrivial twisted sum of c_0 and C(K).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem (Cabello Sánchez, Castillo, Kalton, Yost)

Is there a nontrivial twisted sum of c_0 and C(K) for a nonmetrizable compact space K?

Problem

Given a cardinal number κ , is there a nontrivial twisted sum of c_0 and C(K) for a nonmetrizable compact space K of weight equal to κ ?

Fact

Assume that K is a compact space and there is $L \in CDE(K)$ without property (\mathcal{E}). Then there is a nontrivial twisted sum of c_0 and C(K).

(日)

Compact lines

Definition

Consider a closed subset $F \subseteq [0, 1]$, any set $X \subseteq F$ and define a space

$$F_X = F \times \{0\} \cup X \times \{1\}$$

equipped with the topology generated by the lexicographic order.

Theorem (Ostaszewski, 1974)

The space L is a separable compact linearly ordered space if and only if L is homeomorphic to F_X for some closed set $F \subseteq [0,1]$ and a subset $X \subseteq F$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Compact lines

Definition

Consider a closed subset $F \subseteq [0, 1]$, any set $X \subseteq F$ and define a space

$$F_X = F \times \{0\} \cup X \times \{1\}$$

equipped with the topology generated by the lexicographic order.

Theorem (Ostaszewski, 1974)

The space L is a separable compact linearly ordered space if and only if L is homeomorphic to F_X for some closed set $F \subseteq [0, 1]$ and a subset $X \subseteq F$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Properties of compact lines

Properties of the space F_X

- F_X is a compact Hausdorff space,
- $w(F_X) = |X|,$
- F_X is separable,
- F_X is 0-dimensional if X is dense in F.

・ 同 ト ・ ヨ ト ・ ヨ ト

- *F_X* is a compact Hausdorff space,
- $w(F_X) = |X|$,
- F_X is separable,
- F_X is 0-dimensional if X is dense in F.

<日

<</p>

- *F_X* is a compact Hausdorff space,
- $w(F_X) = |X|$,
- *F_X* is separable,
- F_X is 0-dimensional if X is dense in F.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- *F_X* is a compact Hausdorff space,
- $w(F_X) = |X|$,
- F_X is separable,

• F_X is 0-dimensional if X is dense in F.

< 同 > < 三 > < 三 >

- *F_X* is a compact Hausdorff space,
- $w(F_X) = |X|$,
- F_X is separable,
- F_X is 0-dimensional if X is dense in F.

• • = • • = •

Given a compact space K, we say that L is a countable discrete extension of K if the following are satisfied

• K is a subspace of L,

L is compact,

L \ K is a countable infinite discrete space.

Given a compact space K, we say that L is a countable discrete extension of K if the following are satisfied

```
K is a subspace of L,
```

L is compact,

 $L \setminus K$ is a countable infinite discrete space.

Given a compact space K, we say that L is a countable discrete extension of K if the following are satisfied

- K is a subspace of L,
- L is compact,

 $L \setminus K$ is a countable infinite discrete space.

Given a compact space K, we say that L is a countable discrete extension of K if the following are satisfied

- K is a subspace of L,
- L is compact,
- $L \setminus K$ is a countable infinite discrete space.

Properties (\mathcal{R}) and (\mathcal{E})

Definition

For a compact space K and $L \in CDE(K)$ we say that

- L has property (R) if there is a continuous retraction r from L onto K.
- L has property (E) if there is an extension operator E from C(K) to C(L).

Here by an extension operator we mean a bounded linear operator $E: C(K) \rightarrow C(L)$ such that Ef|K = f and for every $f \in C(K)$.

Observation

 $(\mathcal{R}) \implies (\mathcal{E})$, as $Ef = f \circ r$ is an extension operator.

< 日 > < 同 > < 三 > < 三 > <

Properties (\mathcal{R}) and (\mathcal{E})

Definition

For a compact space K and $L \in CDE(K)$ we say that

- L has property (R) if there is a continuous retraction r from L onto K.
- L has property (E) if there is an extension operator E from C(K) to C(L).

Here by an extension operator we mean a bounded linear operator $E: C(K) \rightarrow C(L)$ such that Ef|K = f and for every $f \in C(K)$.

Observation

 $(\mathcal{R}) \implies (\mathcal{E})$, as $Ef = f \circ r$ is an extension operator.

< 日 > < 同 > < 三 > < 三 > <

Properties (\mathcal{R}) and (\mathcal{E})

Definition

For a compact space K and $L \in CDE(K)$ we say that

- L has property (R) if there is a continuous retraction r from L onto K.
- L has property (E) if there is an extension operator E from C(K) to C(L).

Here by an extension operator we mean a bounded linear operator $E: C(K) \rightarrow C(L)$ such that Ef|K = f and for every $f \in C(K)$.

Observation

 $(\mathcal{R}) \implies (\mathcal{E})$, as $Ef = f \circ r$ is an extension operator.

イロト イヨト イヨト ・

Problem (Cabello Sánchez, Castillo, Kalton, Yost)

Is there a nontrivial twisted sum of c_0 and C(K) for a nonmetrizable compact space K?

Problem

Given a cardinal number κ , is there a nontrivial twisted sum of c_0 and C(K) for a nonmetrizable compact space K of weight equal to κ ?

Fact

Assume that K is a compact space and there is $L \in CDE(K)$ without property (\mathcal{E}). Then there is a nontrivial twisted sum of c_0 and C(K).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary

Results

Fix $\omega < \kappa < \mathfrak{c}$. There are:

- A countable discrete extension of the space F_X without property
 (R) for some set X of cardinality κ.
- A countable discrete extension of the space F_X without property
 (ε) for some set X of cardinality κ if κ > non(M).

Open problem

Assume that the set X is meager. Is there a countable discrete extension of the space F_X without property (\mathcal{E})?

Summary

Results

Fix $\omega < \kappa < \mathfrak{c}$. There are:

- A countable discrete extension of the space F_X without property
 (R) for some set X of cardinality κ.
- A countable discrete extension of the space F_X without property
 (ε) for some set X of cardinality κ if κ > non(M).

Open problem

Assume that the set X is meager. Is there a countable discrete extension of the space F_X without property (\mathcal{E})?

Summary

Results

Fix $\omega < \kappa < \mathfrak{c}$. There are:

- A countable discrete extension of the space F_X without property
 (R) for some set X of cardinality κ.
- A countable discrete extension of the space F_X without property
 (ε) for some set X of cardinality κ if κ > non(M).

Open problem

Assume that the set X is meager. Is there a countable discrete extension of the space F_X without property (\mathcal{E})?

• $Q = \mathbb{Q} \cap [0,1]$,

•
$$Q = \{q_n : n \in \omega\},$$

• for $x \in [0, 1]$ put $A_x = \{n \in \omega : q_n < x\}$,

 let A be the Boolean Algebra generated by sets A_x and the family of finite subsets of Q.

Then $Ult(\mathcal{A}/fin) \simeq [0,1]_{(0,1)}$ and $Ult(\mathcal{A}) \in CDE(Ult(\mathcal{A}/fin))$. This extension has property (\mathcal{R}) , as

$$r(x) = \begin{cases} x & \text{for } x \in Ult(\mathcal{A}/fin), \\ (q_n, 1) & \text{for } x = n \notin Ult(\mathcal{A}/fin). \end{cases}$$

is a retraction.

(4) (日本)

• $Q = \mathbb{Q} \cap [0, 1]$,

•
$$Q = \{q_n : n \in \omega\},$$

• for $x \in [0, 1]$ put $A_x = \{n \in \omega : q_n < x\}$,

 let A be the Boolean Algebra generated by sets A_x and the family of finite subsets of Q.

Then $Ult(\mathcal{A}/fin) \simeq [0,1]_{(0,1)}$ and $Ult(\mathcal{A}) \in CDE(Ult(\mathcal{A}/fin))$. This extension has property (\mathcal{R}) , as

$$r(x) = \begin{cases} x & \text{for } x \in Ult(\mathcal{A}/fin), \\ (q_n, 1) & \text{for } x = n \notin Ult(\mathcal{A}/fin). \end{cases}$$

is a retraction.

(4) (日本)

- $Q = \mathbb{Q} \cap [0, 1]$,
- $Q = \{q_n : n \in \omega\},\$
- for $x \in [0,1]$ put $A_x = \{n \in \omega : q_n < x\}$,
- let A be the Boolean Algebra generated by sets A_x and the family of finite subsets of Q.

Then $Ult(\mathcal{A}/fin) \simeq [0,1]_{(0,1)}$ and $Ult(\mathcal{A}) \in CDE(Ult(\mathcal{A}/fin))$. This extension has property (\mathcal{R}) , as

$$r(x) = \begin{cases} x & \text{for } x \in Ult(\mathcal{A}/fin), \\ (q_n, 1) & \text{for } x = n \notin Ult(\mathcal{A}/fin). \end{cases}$$

is a retraction.

- $Q = \mathbb{Q} \cap [0, 1]$,
- $Q = \{q_n : n \in \omega\},\$
- for $x \in [0,1]$ put $A_x = \{n \in \omega : q_n < x\}$,
- let A be the Boolean Algebra generated by sets A_x and the family of finite subsets of Q.

Then $Ult(\mathcal{A}/fin) \simeq [0,1]_{(0,1)}$ and $Ult(\mathcal{A}) \in CDE(Ult(\mathcal{A}/fin))$. This extension has property (\mathcal{R}) , as

$$r(x) = \begin{cases} x & \text{for } x \in Ult(\mathcal{A}/fin), \\ (q_n, 1) & \text{for } x = n \notin Ult(\mathcal{A}/fin). \end{cases}$$

is a retraction.

< 回 > < 回 > < 回 >

• $Q = \mathbb{Q} \cap [0, 1]$,

•
$$Q = \{q_n : n \in \omega\},$$

• for
$$x \in [0, 1]$$
 put $A_x = \{n \in \omega : q_n < x\}$,

 let A be the Boolean Algebra generated by sets A_x and the family of finite subsets of Q.

Then $Ult(\mathcal{A}/fin) \simeq [0,1]_{(0,1)}$ and $Ult(\mathcal{A}) \in CDE(Ult(\mathcal{A}/fin))$. This extension has property (\mathcal{R}) , as

$$r(x) = \begin{cases} x & \text{for } x \in Ult(\mathcal{A}/fin), \\ (q_n, 1) & \text{for } x = n \notin Ult(\mathcal{A}/fin). \end{cases}$$

is a retraction.

< 回 > < 回 > < 回 >

• $Q = \mathbb{Q} \cap [0, 1]$,

•
$$Q = \{q_n : n \in \omega\},$$

• for
$$x \in [0, 1]$$
 put $A_x = \{n \in \omega : q_n < x\}$,

 let A be the Boolean Algebra generated by sets A_x and the family of finite subsets of Q.

Then $Ult(\mathcal{A}/fin) \simeq [0,1]_{(0,1)}$ and $Ult(\mathcal{A}) \in CDE(Ult(\mathcal{A}/fin))$. This extension has property (\mathcal{R}), as

$$r(x) = egin{cases} x & ext{for } x \in Ult(\mathcal{A}/fin), \ (q_n,1) & ext{for } x = n \notin Ult(\mathcal{A}/fin). \end{cases}$$

is a retraction.

通 ト イ ヨ ト イ ヨ ト

The norm of an extension operator

Theorem

Suppose that

- K is a 0-dimensional compact line,
- $L \in CDE(K)$,
- there is an extension operator $E : C(K) \rightarrow C(L)$ satisfying ||E|| < 2.

Then L has property (\mathcal{R}) .

Theorem

For any uncountable $\kappa \leq \mathfrak{c}$ there is a countable discrete extension of a compact line of weight κ with property (\mathcal{E}) such that the minimal norm of an extension operator is equal to 3.

(日)

The norm of an extension operator

Theorem

Suppose that

- K is a 0-dimensional compact line,
- $L \in CDE(K)$,
- there is an extension operator $E : C(K) \rightarrow C(L)$ satisfying ||E|| < 2.

Then L has property (\mathcal{R}) .

Theorem

For any uncountable $\kappa \leq \mathfrak{c}$ there is a countable discrete extension of a compact line of weight κ with property (\mathcal{E}) such that the minimal norm of an extension operator is equal to 3.

Construction (Marciszewski)

- $T = 2^{<\omega}$; $N \subseteq 2^{\omega}$ sequences with infinitely many ones,
- for $x \in [0,1]$ put $S_x = \{x|_{n-1} \cap 0 : x(n-1) = 1\},\$
- $A_x = \{t \in T : t \leq x\} \setminus S_x$,
- denote by A_X the Boolean algebra of subsets of T generated by $\{A_x : x \in X\} \cup fin(T)$ for some set $X \subseteq N$.

く 何 ト く ヨ ト く ヨ ト

Construction (Marciszewski)

- $T = 2^{<\omega}$; $N \subseteq 2^{\omega}$ sequences with infinitely many ones,
- for $x \in [0,1]$ put $S_x = \{x|_{n-1} \ \ 0 : x(n-1) = 1\},$

• $A_x = \{t \in T : t \leq x\} \setminus S_x$,

• denote by A_X the Boolean algebra of subsets of T generated by $\{A_x : x \in X\} \cup fin(T)$ for some set $X \subseteq N$.

く 何 ト く ヨ ト く ヨ ト

Construction (Marciszewski)

- $T = 2^{<\omega}$; $N \subseteq 2^{\omega}$ sequences with infinitely many ones,
- for $x \in [0,1]$ put $S_x = \{x|_{n-1} \ \widehat{\ } 0 : x(n-1) = 1\},$

•
$$A_x = \{t \in T : t \leq x\} \setminus S_x$$
,

• denote by A_X the Boolean algebra of subsets of T generated by $\{A_x : x \in X\} \cup fin(T)$ for some set $X \subseteq N$.

 $S_{\frac{1}{2}}, A_{\frac{1}{2}}$

A (1) < A (1) < A (1) </p>

Construction (Marciszewski)

- $T = 2^{<\omega}$; $N \subseteq 2^{\omega}$ sequences with infinitely many ones,
- for $x \in [0,1]$ put $S_x = \{x|_{n-1} \ \widehat{\ } 0 : x(n-1) = 1\},$

•
$$A_x = \{t \in T : t \leq x\} \setminus S_x$$
,

 S_{1}, A_{1}

• denote by A_X the Boolean algebra of subsets of T generated by $\{A_x : x \in X\} \cup fin(T)$ for some set $X \subseteq N$.

 $\begin{array}{c}
\varepsilon \\
0 & 1 \\
00 & 01 & 10 & 11
\end{array}$

A (1) < A (1) < A (1) </p>

Construction (Marciszewski)

• $T = 2^{<\omega}$; $N \subseteq 2^{\omega}$ - sequences with infinitely many ones,

11

• for
$$x \in [0,1]$$
 put $S_x = \{x|_{n-1} \cap 0 : x(n-1) = 1\},$

•
$$A_x = \{t \in T : t \leq x\} \setminus S_x$$
,

• denote by A_X the Boolean algebra of subsets of T generated by $\{A_x : x \in X\} \cup fin(T)$ for some set $X \subseteq N$.

 $S_{\frac{1}{2}}, A_{\frac{1}{2}}$

ε

伺 ト イ ヨ ト イ ヨ ト

Properties of $Ult(A_X)$

Theorem

The space $Ult(A_X)$ is a CDE of a compact line without property (\mathcal{R}) for any uncountable set X.

Theorem

For any uncountable set X there is an extension operator E : $C(Ult(\mathcal{A}_X/fin)) \to C(Ult(\mathcal{A}_X))$ of the norm equal to 3.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Properties of $Ult(A_X)$

Theorem

The space $Ult(A_X)$ is a CDE of a compact line without property (\mathcal{R}) for any uncountable set X.

Theorem

For any uncountable set X there is an extension operator $E : C(Ult(A_X/fin)) \rightarrow C(Ult(A_X))$ of the norm equal to 3.

一回 ト イヨト イヨト

Using a similar construction one can also prove the following theorem.

Theorem

For a second category set X there is a countable discrete extension of the space F_X without property (\mathcal{E}).